RNA stem-loops: to be or not to be cleaved by RNAse III.
نویسندگان
چکیده
Most of the vertebrate genome is transcribed into RNA. Transcribed regions contain hundreds of thousands of potential duplex structures that could serve as substrates for RNAse III enzymes of microRNA (miRNA) maturation pathways. Yet, only a minority of these potential precursors make their way to the cytoplasm to form mature miRNAs. We question here what specific structural features make an RNA stem-loop structure an adequate primary or precursor miRNA. We address this question by comparing known pre-miRNAs to other predicted noncoding transcripts obtained from comparative genomics scans, using the structure comparison program RNAforester. By analyzing a classification tree of 1200 such RNA structures, we observe that pre-miRNAs cluster distinctly from other duplex structures of apparently similar size and free energy. The most distinctive features of nonprecursor duplexes are increased lengths and numbers of bulges and internal loops when compared to real miRNA precursors. Thanks to these characteristics, secondary structure comparison can predict the miRNA precursor status of a candidate stem-loop with a surprising accuracy. Furthermore, predicted noncoding transcripts tend to depart from miRNA precursor characteristics more strongly than randomly occurring duplex structures in genomic DNA. This result suggests that many noncoding RNAs may be under selection to dodge the RNAi pathway.
منابع مشابه
Depletion of yeast RNase III blocks correct U2 3' end formation and results in polyadenylated but functional U2 snRNA.
Yeast U2 snRNA is transcribed by RNA polymerase II to generate a single non-polyadenylated transcript. A temperature-sensitive yeast strain carrying a disruption in RNT1, the gene encoding a homolog of RNase III, produces 3'-extended U2 that is polyadenylated. The U2 3'-flanking region contains a putative stem-loop that is recognized and cleaved at two sites by recombinant GST-Rnt1 protein in v...
متن کاملDepletion of yeast RNase III blocks correct U2 39 end formation and results in polyadenylated but functional U2 snRNA
Yeast U2 snRNA is transcribed by RNA polymerase II to generate a single non-polyadenylated transcript. A temperature-sensitive yeast strain carrying a disruption in RNT1, the gene encoding a homolog of RNase III, produces 39-extended U2 that is polyadenylated. The U2 39-flanking region contains a putative stem– loop that is recognized and cleaved at two sites by recombinant GST–Rnt1 protein in ...
متن کاملCharacterization of Aquifex aeolicus ribonuclease III and the reactivity epitopes of its pre-ribosomal RNA substrates
Ribonuclease III cleaves double-stranded (ds) structures in bacterial RNAs and participates in diverse RNA maturation and decay pathways. Essential insight on the RNase III mechanism of dsRNA cleavage has been provided by crystallographic studies of the enzyme from the hyperthermophilic bacterium, Aquifex aeolicus. However, the biochemical properties of A. aeolicus (Aa)-RNase III and the reacti...
متن کاملSubstrate specificity of an RNase III-like activity from Bacillus subtilis.
Bacillus subtilis bacteriophage SP82 codes for several early RNAs that were shown previously to be cleaved by an RNase III-like enzyme called "Bs-RNase III." Cloning of DNA fragments that encode these RNA sequences downstream of a T7 RNA polymerase promoter allowed the synthesis of substrates that were used to test the cleavage specificity of Bs-RNase III, which was purified from a protease-def...
متن کاملA new alpha-helical extension promotes RNA binding by the dsRBD of Rnt1p RNAse III.
Rnt1 endoribonuclease, the yeast homolog of RNAse III, plays an important role in the maturation of a diverse set of RNAs. The enzymatic activity requires a conserved catalytic domain, while RNA binding requires the double-stranded RNA-binding domain (dsRBD) at the C-terminus of the protein. While bacterial RNAse III enzymes cleave double-stranded RNA, Rnt1p specifically cleaves RNAs that posse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- RNA
دوره 13 4 شماره
صفحات -
تاریخ انتشار 2007